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INTRODUCTION 

Both manned and unmanned spacecraft are designed t o  carry o u t a  var ie ty  

of missions i n  support of NASA programs for t he  exploration and exploi ta t ion 

of space. The great  majority of these spacecraft  require  some sor t  of att i-  

tude control  i n  order t o  carry out t h e i r  assigned mission. 

spacecraf t  u t i l i z e  radio t o  transmit t h e i r  data  back t o  ea r th  so  it i s  

necessary t o  point  an antenna. 

c e l l s  t o  supply power and hence t h e  s a t e l l i t e  must be or iented so t h a t  the 

panels receive maximum s o l a r  radiat ion.  

experiments requires  t h a t  instruments maintain a specif ied o r i en ta t ion ,  

i n  t h e  case of one of t h e  l a rges t  and most complex satell i tes,  t h e  orbi t -  

ing astronomical observatory ( O A O ) ,  t he  e n t i r e  spacecraf t  must be  precisely 

pointed at  a star i n  order t o  observe it with t h e  l a rge  telescope r i g i d l y  

The s c i e n t i f i c  

Many s a t e l l i t e s  depend upon panels of s o l a r  

The nature of c e r t a i n  s c i e n t i f i c  



mounted t o  t h e  vehicle.  

w i l l  be required t o  m a k e  t r a j e c t o r y  corrections i n  route  so the  th rus t  vector 

must be properly or iented.  

achieved i n  order t o  go i n t o  o r b i t  around the  moon, or a p lane t ,  or t o  re- 

en te r  t h e  e a r t h ' s  atmosphere from o rb i t .  

Spacecraft  designed f o r  l una r  or planetary missions 

A p rec i se  t h r u s t  vector o r i en ta t ion  must a l s o  be 

There are four primary f ac to r s  t h a t  determine the  performance o f  a 

spacecraft  a t t i t u d e  control  system. They are: 

( a )  Spacecraft  i n e r t i a  
( b )  External torques ( s o l a r  pressure,  gravi ty  gradient ,  

micrometeorites ) 
( e )  Applied torque (from con t ro l l e r )  
(dl  Att i tude sensors 

In  the  development of a control  system these f ac to r s  must be considered dur- 

ing t h e  ana ly t i ca l  formulation, and they are likewise important f o r  dynamic 

system simulation which has come t o  play an e s s e n t i a l  role i n  t he  ve r i f i ca -  

t i o n  and refinement of performance when actual  components a r e  employed. 

Two important and unique f ea tu res  of t h e  space environment especial ly  

per t inent  t o  a t t i t u d e  control  systems are  the  cancel la t ion of  g rav i ty  e f f ec t s  

by the  t r a j e c t o r y  accelerat ion,  and t h e  v i r t u a l  absence of f r i c t i o n a l  r e s i s t -  

ing torques due t o  t h e  near vacuum environment. These f ea tu res  can be 

accounted f o r  during analyt ic  invest igat ion and computer simulations,  but 

present  a problem f o r  simulation s tudies  t h a t  involve physical equipment. 

No method of simulating zero g rav i ty  i s  avai lable  i n  the  laboratory although 

g rav i ty  e f f e c t s  can be minimized i n  a dynamic simulation t o  t h e  extent t h a t  

t h e  center  of ro t a t ion  can be made t o  coincide w i t h  t h e  c-nter of gravi ty .  

The most s a t i s f ac to ry  way t o  simulate the  low f r i c t i o n  aspect of  t he  space 

environment is by t h e  use of t he  airbear ing supported t e s t  platform, and 

the  remainder of t h i s  paper w i l l  deal  with t h e  design and use of a i rbear ing 

platforms f o r  space vehicle  a t t i t u d e  control  system s tud ie s  and t e s t s .  It 
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will be shown t h a t  t h e  airbear ing platform provides a mounting of extremely 

low f r i c t i o n  with wide o r i en ta t ion  capabi l i ty .  

zero gravi ty  e f f e c t ,  but it can permit s ens i t i ve  balance t o  b r ing  t h e  center  

of g rav i ty  very close t o  the  center  of r o t a t i o n  and hence minimize pendul- 

ous e f f ec t s .  Essen t i a l ly ,  t he  ai rbear ing platform permits an accurate repre- 

sentat ion of spacecraf t  i n e r t i a  and r e a l i s t i c  use of t h e  ac tua l  vehicle  

a t t i t u d e  control  torque sources and sensors. 

It does not dupl icate  t h e  

THE AIRBEARING PLATFORM 

Figure 1 is  a p i c tu re  of an airbear ing supported platform constructed at 

NASA Ames Research Center i n  1959. It may appear very simple compared t o  the  

present s t a t e  of the art as exemplified by several  l a rge  and complex f a c i l i t -  

ies i n  the aerospace industry,  but  it i l lus t ra tes  most of t he  fundamental 

advantages and problem of a i rbear ing t ab le s .  The t a b l e  i s  supported by a 5- 

inch-diameter sphe r i ca l  aluminum bearing which has a cy l ind r i ca l  neck t o  which 

t h e  frame of t he  platform i s  bol ted.  The bearing seat is a matching hemisphere 

of epoxy r e s in  cas t  i n t o  a metal cup tha t  r e s t s  upon a four-legged support t o  

t h e  f loo r .  The r a i sed  center  construction puts t h e  center  of ro t a t ion  about 

t h ree  inches above the working platform t o  minimize t h e  need f o r  ex t r a  bal-  

ance weights t o  maintain t h e  platform i n  pendulous balance as a t t i t u d e  con- 

t r o l  equipment i s  added t o  the platform. A major e f f o r t  is made t o  keep the 

t a b l e  center  of ro t a t ion  and center  of g rav i ty  coincident so t h a t  gravi ty  

e f f e c t s  w i l l  be avoided. 

t h e  use of a i rbear ing platforms i s  t o  avoid torques due t o  g rav i ty  unbalance. 

The use of s t i f f ened  r i b  construction i n  t h i s  platform is an attempt t o  prevent 

platform f lexure with changes i n  p i t ch  and roll. Such f lexure i s  termed an 

I n  f a c t ,  a fundamental and ubiquitous problem i n  
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an i soe la s t i c  e f f e c t  and considerahle t h e o r e t i c a l  and design e f f o r t  i s  expended 

t o  minimize t h e  r e su l t an t  gravi ty  torque i n  the  most p rec i se  f a c i l i t i e s .  

platform i n  Figure 1 supports an o p t i c a l  sensor t o  provide an e l e c t r i c a l  e r ro r  

s igna l  as t h e  platform attempts t o  d r i f i  from a desired or ientat ion.  

e r r o r  s i g n a l  actuates  t h e  i n e r t i a  wheels which develop a torque t o  maintain 

the  desired platform a t t i t ude .  It w i l l  be noted t h a t  these wheels a re  i n  a 

p l a s t i c  enclosure t o  assure  t h a t  they provide torque only hy t h e i r  i n e r t i a l  

e f f e c t  and not hy f r i c t i o n  against  t h e  air. 

The 

This 

Figure 2 i s  a photograph of  a similar platform i n  operation with a more 

The e n t i r e  platform is  enclosed beneath a hood t o  e laborate  control  system. 

avoid thermal air currents  i n  the  laboratory t h a t  can cause ser ious in t e r f e r -  

ence torques,  a manifold is a l so  i n s t a l l e d  around the  spherical  bearing t o  pump 

o f f  t h e  a i r  used f o r  support ,  a number of  small wires a re  brought from t h e  base 

t o  t h e  t a b l e  around t h e  airbear ing.  This causes a s l i g h t  interference torque 

but permits operat ional  f l e x i b i l i t y  by providing e l e c t r i c a l  power and instru-  

mentation connections t o  the laboratory bench. Two two-axis star t r acke r s  a re  

mounted on the  t a b l e  t o  give con t ro l  s igna l s  i n  a l l  three axes. Three torquers 

are used, each of which u t i l i z e s  a p a i r  of control  moment gyros (Ref. 1). 

This equipment w a s  used t o  invest igate  dynamic performance when the  t a b l e  was 

displaced through s m a l l  angles from t h e  reference l i g h t  sources - about 1 /2  

degree. 

t a b l e  a t t i t u d e  changes caused unbalanced e f f ec t s .  This equipment w a s  ab l e  t o  

maintain i t s  reference a t t i t u d e  within about one second of a r c  i n  a l l  th ree  axes 

It was necessary t o  t ape  a l l  wires t o  t h e  t a b l e  as s l i g h t  shifts with 

IMPORTANT CONSIDERATIONS I N  AIRBEARING TABLE D E S I G N  AND OPERATION 

The foregoing p i c tu re s  and descr ipt ions of spec i f i c  t es t  platforms w i l l  
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serve t o  introduce t h e  subject  of design problem areas which i s  t h e  primary 

concern of this paper. 

Design problems arise because it is desirable  from a research standpoint 

(and t h e  airbear ing platform is  es sen t i a l ly  a research t o o l )  t o  provide maximum 

convenience i n  the  operation of t he  platform and at the same t i m e  t o  maintain 

all in t e r f e r ing  disturbance torques at a very low l e v e l  t o  simulate t h e i r  

absence i n  space. The most important operational f l e x i b i l i t y  requirements 

include the  a b i l i t y  t o  subs t i t u t e  various pieces o f  equipment on the  t h e  p l a t -  

form quickly; t he  a b i l i t y  t o  supply e l e c t r i c a l  power t o  equipment on the  t ab le ;  

t he  a b i l i t y  t o  measure the  instantaneous a t t i t u d e  of the t a b l e ;  the a b i l i t y  t o  

u t i l i z e  a va r i e ty  of  platform torque sources including iner t ia  wheels, control  

moment gyros, magnetic f i e l d  torquers and gas react ion je t s ;  and the  a b i l i t y  

t o  use various t racking devices such as star t r acke r s ,  planet  t r acke r s ,  sun 

t r acke r s ,  horizon scanners and i n e r t i a l  sensors.  

The most s t ra ightforward way t o  carry out equipment modifications on an 

airbeaxing platform by simple interchange of components would introduce sign- 

i f i c a n t  unbalance torques.  A major design e f f o r t  i s  therefore  expended i n  

providing t h e  required operat ional  f l e x i b i l i t y  by means t h a t  keep the  in t e r -  

f e r ing  torques a t  an acceptable l eve l .  I n  general ,  t h e  replacement of a piece 

of equipment w i l l  cause a s h i f t  of the platform center  of gravi ty  a u q  from 

t h e  center  of ro t a t ion  and t h e  r e su l t i ng  unbalance torque due t o  gravi ty  w i l l  

be balanced out by s h i f t i n g  adjustable  weights on t h e  platform. 

I n  order t o  judge how ser ious various dis turbing torques a r e ,  t he  follow- 

ing  is an estimate of disturbance torques t h a t  w i l l  a c t  upon an a c t u a l  sat- 

e l l i t e  i n  o r b i t .  One of t he  l a rges t  NASA s c i e n t i f i c  s a t e l l i t e s  t h a t  w i l l  re- 

qu i r e  very precise  a t t i t u d e  control  w i l l  be the  Orbiting Astronornicsl 

Observatory. A s  shown i n  Figure 3 ,  it w i l l  approximate a cyl inder  6 f e e t  i n  
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diameter and 10 f e e t  long. 

moment of i n e r t i a  of 1450 s lug  f e e t  squared. 

it w i l l  experience g rav i ty  gradient torque of 600 dyne cm, r ad ia t ion  torque  

of 150 dyne cm, aerodynamic drag torque of 150 dyne cm, and magnetic torque 

of 600 dyne em. The cont ro l  system must be designed t o  cope with these  t o r -  

ques i n  space as w e l l  as t o  change s a t e l l i t e  a t t i t u d e  on command. 

des i r ab le  i f  t h e  i n t e r f e r i n g  torques ac t ing  on a ground based a i rbear ing  fac- 

i l i t y  used t o  simulate t h e  cont ro l  system operation could be kept below these  

values.  This l e v e l  of disturbance torque is however qu i t e  low and very d i f f -  

i c u l t  t o  ob ta in  i n  a ground based environment. 

dyne cm i s  an extremely s m a l l  un i t  of to rque ;  an ounce inch is 70,615 dyne 

cm, and a foot  pound is 13,558,200 dyne cm. 

It w i l l  weigh 3600 pounds and have a maximum 

While i n  o r b i t  at  500 mi l e s ,  

It would be 

I t  w i l l  be r eca l l ed  t h a t  t h e  

PLATFORM DISTURBANCE TORQUES 

The disturbance torques ac t ing  on an a i rbear ing  t a b l e  have been categor- 

ized  i n t o  t h e  four groups of Figure 4. 

sequence. 

These torques w i l l  be considered i n  

The f i r s t  group depends upon t h e  cons t ruc t ion  of t h e  a i rbear ing  platform 

i t s e l f .  The f i r s t  f i v e  platform torques i n  t h e  f i r s t  group are bas i ca l ly  due 

t o  grav i ty  ac t ing  on a s h i f t  of t h e  center  of mass from t h e  center  of ro ta t ion .  

They are minimized by cons t ruc t ion  of a platform t h a t  i s  very r i g i d  and made 

from mater ia l s  t h a t  do not deform as the  platform a t t i t u d e  is changed, o r  as 

teqperature changes. Solenoid valves used t o  re lease  j e t  t h r u s t  o r  r e l ays  

used t o  cage gyros w i l l  cause impulsive torques ,  and unbalance torques as  t h e  

se lenoid  element s h i f t s  pos i t ion .  

The second group of torques a r i s e  i n  t h e  support .  The a i rbear ing  i t s e l f  



cont r ibu tes  aerodynamic turb ine  torques i f  t h e  a i r f low i s  not p rec i se ly  symm- 

e t r i c a l .  Exhaust air impingement on the  platform due t o  imperfect scavenging 

of t he  bearing also produces a torque. 

The environmental torques of t he  t h i r d  grou? a r e  p a r t i c u l a r l y  troublesome. 

An aerodynamic dmping torque w i l l  arise as t h e  p l a t fo rn  moves through t h e  a i r .  

Some l a rge  i n d u s t r i a l  f a c i l i t i e s  have placed the  e n t i r e  t a b l e  in  a vacuum cham- 

ber  t o  e l imina te  t h i s  torque. One of t h e  most s e r ious  torques is due t o  the  

e f f e c t  of s t r a y  air  cur ren ts  ac t ing  on t h e  platform. It may not be convenient 

t o  p lace  t h e  platform i n  a vacuum chamber, but work t o  any reasonable degree of 

prec is ion  requi res  t h a t  t h e  platform be loca ted  wi th in  some s o r t  of sh ie ld ing  

enclosure.  A n  e f f o r t  should be Yade t o  cons t ruc t  t h e  t a b l e  from nonmagnetic 

mater ia l s .  Some cur ren t  research platforms a r e  placed between th ree  pa i r s  of 

l a rge  Helmholtz c o i l s  which can neu t r a l i ze  t h e  e a r t h ' s  f i e l d .  Vibration e f f -  

e c t s  a r e  minimized by mounting t h e  a i rbear ing  support pedes t a l  on an i s o l a t e d  

seismic block. 

The four th  group of torques i n  Figure 4 depends upon t h e  p a r t i c u l a r  scheme 

used t o  mechanize t h e  cont ro l  system being t e s t e d .  

unsymmetrical deple t ion  of tanks as compressed gas i s  used f o r  reac t ion  th rus t  

can be appreciable.  Even carefu l ly  balanced pa i r s  of compressed gas tanks  

with a common manifold a r e  s t i l l  trouolesome as  they expand under pressure  

and s h i f t  s l i g h t l y .  Mass unbalapce torques within b a t t e r i e s  as they discharge 

are so  d i f f i c u l t  t o  compensate t h a t  research inves t iga t ions  frequently u t i l i z e  

labora tory  e l e c t r i c a l  power supp l i e s  with very f l e x i b l e  leads dropped i n t o  t h e  

cen te r  of t h e  platform. 

modification of equipment a r e  so ivTortant t h a t  some s o r t  o f  automatic o r  Semi- 

automatic balance system i s  needed. A simple arrangement of t'nree Weights t h a t  

can be motor driven l i n e a r l y  along mutually perpendicular d i rec t ions  can be  

Unbalance torques due t o  

For research prunoses t h e  requirements f o r  frequent 
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cont ro l led  by an opera tor  observing t a b l e  motion o r  can be s laved  t o  sens i t i ve  

rate gyros or l i n e a r  accelerometers t o  achieve rebalance a f t e r  any change of 

platform load. 

PLATFORM B M C E  CALCULATIONS 

Figure 5 i l l u s t r a t e s  an unbalance with t h e  platform hor i zon ta l  because 

t h e  cen te r  of grav i ty  i s  displaced ho r i zon ta l ly  and v e r t i c a l l y  be d is tances  

x and y from t h e  cen te r  of ro t a t ion .  When t h e  platform r o t a t e s  through 

an angle 0 from its hor i zon ta l  pos i t i on  t h e  torque due t o  grav i ty  is 

T = -Mgx cos 0 - Mgy s i n  e (1) 

If t h e  platform i s  allowed t o  osc i l le . te  a s  a pendulum through a very s m a l l  

angle,  t h e  period will be 

= 2nE 
( f o r  very small unbalance, t h e  moment o f  i n e r t i a  

of r o t a t i o n  i s  very c lose  t o  I measured about t h e  cen te r  of grav i ty ) .  The 

per iod  can be used t o  compute t h e  d is tance  L between t h e  cen te r  of ro t a t ion  

and center  of grav i ty .  P r a c t i c a l  measurements of unblance involve i n s t m -  

mentation techniques t h a t  w i l l  be discussed l a t e r ,  bu t  i f  it i s  assumed t h a t  

platform angles and ex te rna l  apol ied  forces  can be measured t o  g rea t  enough 

p rec i s ion ,  then  c e r t a i n  simple ca l cu la t ions  can he lp  g rea t ly  i n  t h e  a c t u a l  

t a s k  of balancing a platform. 

I measured about t h e  center  
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The horizontal  s h i f t  of t h e  center  of gravi ty  can be determined by 

measuring t h e  ex te rna l ly  applied torques T and T2 required t o  maintain 

t h e  platform at equal and opposite angles 9 and -8. Applying equation 

(1) with applied torque equal t o  minus g rav i ty  unbalance torque 

1 

T1 = Mgx cos 9 + Mgy s i n  B 

T = M g x  cos 9 - Mgy s i n  9 2 

T1 + T2 x =  
2 ~ g  COS e 

T1 - T2 
Y =  

2Mg s i n  9 

( 3 )  

(41  

For example, i n  simulating a spacecraf t  as l a rge  as the  Orbiting Astronomi- 

c a l  Observatory with a weight of 1600 kilograms and a 2000 kilogram meter 

squared moment of  i n e r t i a ,  a horizontal  center  of  gravi ty  displacement of one 

hundredth of a cm would produce a gravi ty  unbalance torque of 

For another example, a center of  r o t a t i o n  - center  of gravi ty  s h i f t  of a hun- 

dredth centimeter would produce a pendulous period of 

Anisoelastic e f f e c t s  are  due t o  deformations of t he  platform that change 
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as  t h e  platform angle with respect t o  grav i ty  changes. 

e f f e c t s .  The t o p  l e f t  f i gu re  shows an uncleformed p l a t f o m  as it would appear 

i n  the  absence of g rav i ty .  The top  r i g h t  f i gu re  shows a def lec t ion  due t o  the  

e f f e c t  of g rav i ty  a c t i n g  on the  m a s s  of t he  t a b l e  which i s  assumed t o  be con- 

cent ra ted  i n  two blocks which each exer t  a torque 

Each block is de f l ec t ed  downward a d is tance  

form center  of grav i ty  and center  of ro t a t ion  coincide i n  t h i s  normal. g rav i ty  

loaded pos i t ion .  The bottom f igu re  shows how t h e  p la t form begins t o  s t r a igh -  

t en  out as it t i p s .  The torques causing platform de f l ec t ion  a r e  reduced from 

MgL/2 t o  (MgL/2) cos e .  

Figure 6 shows these  

MgL/2 t o  bend t h e  t a b l e .  

do. 
It is assumed t h a t  t h e  p l a t -  

Since t h e  de f l ec t ion  i s  small and va r i e s  from a maximum ( d  ) f o r  t h e  p l a t -  

form l e v e l  at 

reasonahle approximation t o  assume t h a t  t h e  de f l ec t ion  va r i e s  propor t iona l ly  

t o  t h e  torque and at  any tilt angle e would be d = d cos 8 .  The d is tance  

by which t h e  center  of grav i ty  r i s e s  above t h e  cen te r  of r o t a t i o n  perpendic- 

u l a r  t o  t h e  platform as t h e  platform t i l t s ,  is 

0 = 0 t o  zero when t h e  platform i s  v e r t i c a l  e = 90° it is  a 

e = d  - d = d ( l - c o s  E )  

A t  any tilt angle 0 t h i s  cen ter  of grav i ty  s h i f t  causes a disturbance torque 

Mge s i n  0 = LNgd (1 COS '8) s i n  e = .Pigdo(sin 'd - 1/2  s i n  28) 

It is  i n t e r e s t i n g  t o  note that the  disturbance torque due t o  a n i s o e l a s t i c i t y  

has components propor t iona l  t o  both 8 and 28. A numerical example f o r  t h e  

platform values considered previously with a maximum bending def lec t ion  of 

d = 0.01 cm shows an unbalance torque a t  20° of 
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= 318,000 dyne cm 

Another i n t e r e s t i n g  disturbance torque t h a t  can a c t  upon a platform i s  

due t o  g rav i ty  grad ien t .  The force  of g rav i ty  f a l l s  o f f  inverse ly  as t h e  

square of t h e  d is tance  from t h e  center of t h e  ea r th .  

would consider t h a t  a t  a re ference  l eve l  it would be  g = G/R2 where R is 

t h e  rad ius  of t h e  e a r t h  at  t h e  reference.  A t  an a l t i t u d e  h above t h e  re- 

fe rence  l e v e l  it would be In Figure 7 t h e  t a b l e  i s  t ipped  

through an angle 

centers  of mass i s  h = 2L s i n  8 .  I f  t h e  torque due t o  t h e  lower mass a t  

t h e  re ference  a l t i t u d e  i s  (M/2)goL cos 8 ,  t h a t  due t o  t h e  upper mass i s  -(M/2) 

gL cos e so t h e  ne t  to rque  i s  

A s impl i f ied  ana lys i s  

g = G / ( R  + hI2. 

e so t h e  v e r t i c a l  displacement between t h e  two concentrated 

ML T = 2 cos e t g  -g] 

2 i f  terms i n  h a r e  dropped. In se r t ing  the expressions f o r  h and g t h e  

next to rque  due t o  g rav i ty  grad ien t  i s  then  

MgoL2 s i n  2e 

= 2H L2 cos '8 s i n  8 - - 
R R g0 

It i s  i n t e r e s t i n g  t o  note t h a t  t h i s  i s  a function of twice t h e  tilt angle i n  

a fashion similar t o  an i soe la s t i c  torque. For t h e  previous example wi th  two 
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800 kilogram concentrated weights one meter apar t  a t  a tilt angle of 30° and 

R = 6371 km 

1600xio3x980x502xo .866 
T =  = 5340 dyne cm 

6371X105 

This s implif ied analysis  neglects t h e  f a c t  t h a t  t he  r a d i i  from t h e  center 

of t h e  ea r th  t o  the  two concentrated masses a re  not s t r i c t l y  p a r a l l e l .  A more 

rigorous der ivat ion (Ref. 2 )  would reveal t h a t  the g rav i ty  unbalance torque is 

increased 50% by t h i s  e f f e c t  from 

M L~ s i n  28 M= L~ s i n  28 
g0 to 3 -0 

R 2 R 

OPERATIONAL AIRBEARING PLATFORMS 

The next few f igures  w i l l  i l l u s t r a t e  some current ly  operat ional  p l a t -  

forms t h a t  have been used t o  invest igate  a va r i e ty  of s a t e l l i t e  a t t i t u d e  

control  systems. They w i l l  give an idea of t he  designs used by d i f f e ren t  

groups and ind ica t e  some of t h e  possible  refinements t h a t  have been employed. 

a. J e t  Propulsion Lahoratory 

Figure 8 i s  a photograph of a platform developed by t h e  J e t  Propulsion 

Laboratory. This platform represents t he  second generation of airbear ing 

equipment developed at JPL and incorporates several  i n t e re s t ing  features .  The 

platform i s  made very s t i f f  by the  use of heavy metal p l a t e s  i n  a wehbed con- 

s t ruc t ion  so unbalance torques due t o  platform deformation are kept below 10 

gram em. S ta in l e s s  s t e e l  construction is usea t o  minimize magnetic torques 

from t h e  e a r t h ' s  f i e l d .  The platform weighs 800 pounds before mounting any 
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experimental equipment. 

any w i r e s  between t h e  platform and the  labora tory .  

b a t t e r i e s  a r e  used f o r  power on t h e  Flatform. 

gram ern torque f o r  a 90' platform t i p .  

weights along th ree  axes i n  response t o  sens i t i ve  rate gyro s igna l s  t o  achieve 

s t a t i c  balance before t e s t i n g .  The bearing is a 10-inch-diameter beryll ium 

b a l l  sphe r i ca l  t o  wi th in  +30 micro inches,  

and has two concentric c i r c l e s  o f  air  j e t s ,  one c i r c l e  1-1/2 inches i n  diam- 

e t e r  has t e n  j e t s .  The o ther  c i r c l e  3.6 inches i n  d iaqe ter  has 23 j e t s .  The 

pad mounting assembly provides a nylon r ing  as a support f o r  t he  b a l l  and t a b l e  

at times when the re  is no a i r  pressure  applied.  The bearing pad i t s e l f  is so 

constructed t h a t  it r i s e s  as a p i s ton  w i t h  air  pressure.  

supply i s  requi red  t o  f l o a t  t h e  t a b l e .  An a t t i t u d e  cont ro l  system mounted 

on the  t a b l e  has included gyros, sun sensors ,  canopus sensor and con t ro l  j e t s .  

Figure 9 shows t h e  o f f s e t  pedes ta l  which allows t h e  platform t o  t i p  p a s t  90'. 

Figure 10 shous how the e n t i r e  pedes ta l  can be  motor-driven t o  swing out of 

t h e  way t o  allow maximum t i p  i n  any d i r ec t ion .  

A 30-channel telemetry system i s  u t i l i z e d  ins tead  of 

Sea led  n icke l  c a d i m  

They cont r ibu te  l e s s  than 5 

An automatic balance system d r ives  

The bearing pad is 5 inches across  

About 140 p s i  air 

b.  Ames Research Center 

Figure 11 i s  a sketch of an a i rbear ing  supported man-carrying platform 

used at  Ames Research Center o f  NASA t o  eva lua te  twin gyros a s  an a t t i t u d e  

cont ro l  to rque  source (Ref. 1). 

seconds were used as a t t i t u d e  sensors.  The passanger w a s  constrained t o  a 

movement while manipulating a theodol i te  as a p lane t  t racker .  The cont ro l  

system w a s  ab le  t o  maintain t h e  platform a t t i t u d e  t o  within 5 a r c  seconds. 

Figure 12 i s  a photograph of t h i s  platform. Compressed a i r  was used t o  un- 

load  the  twin gyro con t ro l l e r s ;  notor-driven balance weights along t h r e e  axes 

were used f o r  s t a t i c  balance. 

S t a r  t r acke r s  w i th  a reso lu t ion  of 2 a rc  

The platform weighed 1800 k i log ram and w a s  



supported on a 24-cn s t a i n l e s s  s t e e l  b a l l  i n  an  epoxy r e s i n  seat by about 300 

p s i  air through a s ing le  hole i n  t h e  bottom of t h e  bearing s e a t .  

c. Langley Research Center 

Figure 13 is a photograph of an a i rbear ing  supported platform used at 

t h e  Langley Research Center of XASA t o  inves t iga t e  a wobble danper f o r  a spinn- 

ing s a t e l l i t e  (Ref.3).  

l e s s  s t e e l  b a l l  i n  an epoxy r e s in  seat. A i r  at 20 p s i  i s  admitted through a 

0.09-inch-diameter hole i n  the  bottom of t h e  sea t .  Af te r  t h i s  platform is 

spun up t o  about 20 rpm bj t h e  motor mounted on the  overhangingbeam, t h e  beam 

is swung out of t h e  way t o  allow t h e  platform 520 degrees of freedom t o  t i p  

about a hor izonta l  ax is .  

The platform i s  supported by a 6-inch-diameter s t a in -  

Figure 14 i s  a photograph of another a i rbea r ing  platform t h a t  w a s  used a t  

t h e  Langley Research Center t o  t e s t  a s a t e l l i t e  a t t i t u d e  cont ro l  system using 

both i n e r t i a  wheels and a l a rge  bar  magnet (Ref. 4 ) .  This t a b l e  was supported 

by a 3-inch-diameter brass  b a l l  i n  an aluminum seat. 

ed  through 12 holes loca ted  around the  cup. Power w a s  connected t o  t h e  p l a t -  

form through small-coiled wires suspended above t h e  center  of t h e  t a b l e .  

Air a t  1 5  p s i  w a s  adqitt- 

d. Marshall Space F l ight  Center 

Figure 1 5  is a photograph of an e a r l y  a i rbear ing  t a b l e  constructed by t h e  

Marshall Space F l ight  Center of NASA. 

change i n  r o l l  and p i t ch  and unlimited freedom i n  yaw (Ref. 51. The bearing 

is a 10-inch-diameter b a l l  manufactured t o  a to le rance  of 50 mi l l i on ths  of an 

inch. A i r  i s  admitted t o  t h e  bearing cup through t i n y  holes arranged i n  two 

concentric c i r c l e s  and is  vented both a t  t he  edge and at t h e  center  of t h e  cup. 

The platform is balanced by f i r s t  applying a brake t o  t h e  b a l l  t o  keep t h e  

t a b l e  s t a t iona ry ,  and then measuring t a b l e  motion when the  brake is released. 

Balance weights a re  then ad jus ted  t o  minimize the  motion. 

The o f f s e t  support permits +120° a t t i t u d e  

Two r a t h e r  c l eve r  
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devices are employed for  fine balance. S tee l  s t r i p s  are  attached t o  the  plat- 

form by nylon mounting pads whose large temperature coefficient causes a sh i f t  

i n  the center of gravity of the  s t e e l  s t r i p s  t o  compensate for temperature 

e f fec ts  on the table  as a whole; a lso three pairs of cantilever springs with 

weights attached can be used t o  compensate for  anisoelastic torques by gener- 

a t ing a torque which t o  a f i r s t  approximation varies with the  sine of twice 

the deflection angle of the platform. 

t h i s  tab le ,  dry c e l l  ba t te r ies  are  used on the platform, and information from 

the control system i s  telemetered out. 

No external connections are  made t o  

Figure 16 i l l u s t r a t e s  a second generation platform recently instal led 

a t  Marshall Space Flight Center. 

shaped body and offers  extreme r ig id i ty  and large moments of i n e r t i a  with 

minimum mass. 

is  specially t rea ted  t o  prevent warping. 

sphere and cup. To balance the simulator it is temporarily constrained t o  

rotate  about a single axis by means of a small auxiliary spherical airbearing 

which can be attached t o  the platform a t  any of three locations which represent 

three orthogonal axes about which balance i s  t o  be achieved. Acceleration is 

then measured about the axis of freedom i n  order t o  compute the unbalance 

torque. A recent communication from Marshall made the  following comments 

about this platform: 

This platform is  a highly symmetrical disc- 

The platform is b u i l t  of nonmagnetic materia3 (aluminum) and 

The bearing consists of an aluminum 

A t  Marshall the major problem encountered while attempting t o  employ the 

simulator for  control system studies has been t h a t  of achieving and maintain- 

ing balance at any angular position. The sources o f  unbalance that  exis t  i n  

general and current methods of overcoming them are  tabulated below: 

1. Torque caused by platform deformation which resul ts  from: 

a. Heating by radiation from external reference sources such as 

sun, star or earth simulators. 
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b. Heating by r ad ia t ion  and conduction from onboard instrumentation. 

(No completely sa t i s f ac to ry  so lu t ion  f o r  a and b.)  

c. Changes i n  the ambient temperature of  t h e  room. 

(Solved by very accurate control  of room temperature.) 

d. Gravity an i soe la s t i c i ty  torques. (Solved by can t i l eve r  spr ing 

mass compensators.) 

2. Airbearing or "turbine" torques. 

3. Torques due t o  nonspbericity of t he  bearing. (Both 2 and 3 solved 

by holding airbear ing manufacturing tolerances t o  t h e  minimum 

allowed by the  s t a t e  of t h e  art - t e n  mil l ionths  o f  an inch.)  

Torques caused by air  currents which r e s u l t  from: 

a. Roon a i r  conditioning system. 

b. Convection currents from hot equipment i n  the  room or onboard 

4. 

t h e  simulator.  

i n  a vacuum chamber. A close f i t t i n g  enclosure and shut- 

down of room air  conditioning and ven t i l a t ion  w i l l  help.)  

( A  complete so lu t ion  would require  operation 

5. Torques caused by s h i f t  of t h e  center  of mass of onboard ba t t e r i e s .  

(No s a t i s f a c t o r y  solut ion.  

s h i f t  i s  a k c t i o n  of angular posi t ion,  time i n  the  angular pos- 

i t i o n ,  and discharge r a t e . )  

It has been determined t h a t  t h e  mass 

6. Torques caused by s h i f t  of mass of onboard instrumentation. 

a. Relay armatures. (Solved by use of s o l i d  state switching or 

employment of balanced armature relays.  ) 

b .  Deformation of wiring harnesses and components. (Solved by 

constructing r i g i d  containers with securely attached compon- 

en t s  and so l id ly  anchored t o  t h e  platform. A l l  wiring harnesses 

a r e  pot ted and anchored.) 
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7. Torques caused hy s h i f t  of the composite m a s s  of the simulator due 

t o  depletion of an onboard propellant supply - compressed gas. 

(Solved by making the center of mass of the propellant cavi t ies  

coincident with t h e  center of rotat ion of the platfom.)  

8. Torques caused by gravity gradient. (Solved by use of the aniso- 

e las t ic i ty  compensators since it is a function of twice the tilt 

angle of the platform.) 

9 .  Torques caused by the earth's magnetic f ie ld .  (Solved by using 3 

pairs  of Helmholtz coi ls  t o  cancel the earth's f ie ld . ]  

e .  United Aircraft Corporation 

There are  several large and complex airhearing instal la t ions i n  industry. 

Three of these, those at United Aircraf t ,  Grumman, and General Electr ic ,  w i l l  

be described t o  f i l l  out the picture of existing research f a c i l i t i e s .  

Figure 17 is a picture of the  airbearing f a c i l i t y  a t  United Aircraft Cor- 

porate Systems Center, Farmington, Connecticut. This platform is distinguished 

by a very accurate a t t i tude  measurement system. 

surrounded by a three-axis following gimhal system which u t i l i zes  autocoll- 

imator signals t o  t rack the airbearing platform without any physical contact. 

Angular pickoffs on the  gimbal axes then provide a t t i tude  data  for  the  plat-  

form t o  within a few seconds of arc. 

diameter airbearing. 

micro inches; it has a surface f inish of  5 micro inches. The hearing i s  supp- 

orted with dry nitrogen at 250 psi  and about 12 cubic feet  per minute. Kith a 

f u l l  load of 8000 ponnds on the  platform the clearance betveen the hearing and 

its seat  i s  about 0.001 inch. There are no external wires connected t o  the 

table .  A l l  instrumentation power is  supplied from onboard ba t te r ies  and data 

i s  telemetered from the table. 

The 5-foot-diameter tab le  i s  

The platform is  supported on a 16-inch- 

The sphericity of the b a l l  i s  within approximately 100 

Ventilation air flow through the laboratory i s  
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is  kept t o  a minimum, controlled t o  x i th in  53' F in  temperature and f i l t e r e d  

of dust par t ic les  larger  than 0.3 micron diameter. 

f. Grwmnan Aircraft Engineering Corporation 

Figure 18 is a p ic tor ia l  representation of the airhearing f a c i l i t y  a t  

The Grumman Aircraft Engineering Corporation, Bethpage, New York (Ref. 61. 

platform is enclosed i n  a chamber tha t  can be evacuated t o  0.75 millimeters 

of mercury t o  effect ively eliminate a i r  current e f fec ts  which are  a 

troublesome source of extraneous torques. 

feet  i n  diameter surround the platform t o  f i r s t  neutralize the earth's magnetic 

f i e l d  and then simulate on a dynamically programmed basis the magnitude and 

direction of the changing f i e l d  a t  s a t e l l i t e  a l t i tude  during a simulated orhit. 

For s t a r  tracking studies f ive collimators, 5 inches i n  diameter, are  located 

within the chamber. They can represent stars from -1.0 t o  +6.0 magnitude. 

Each provides a s t a r  whose angular subtense is less  than eight arc  seconds 

with a parallax e r ror  l e s s  than f ive arc seconds. 

mounted on a 110-ton concrete seismic foundation. 

very 

Three pairs  of Helmholtz co i l s  14 

The en t i re  chamber is 

g. General Electr ic  Company 

Figure 19 i s  a photograph of one of the airhearing instal la t ions a t  the 

General Electr ic  Company, Space Technblogy Center, Valley Forge, Pennsylvania 

(Ref.?). The photograph shows an engineering mock up of the  orhiting astro- 

nomical observatory mounted on a 10-inch-diameter s ta inless  s t e e l  ball .  The 

photograph w a s  taken during the f ine balance of the platform and small cat- 

enary chains connected from the platform t o  supporting posts can be seen. This 

i s  par t  of t h e i r  "chain-o-matic" procedure for  balance. 

u t i l i z e s  the chains t o  apply a proportional restoring torque t o  the platform so 

tha t  the  osci l la t ion period is  shortened by an order of magnitude. This allows 

much more rapid adjustment of weights for f ine  balance. Balance shifts due t o  

This procedure 
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temperature changes have been overcome by maintaining f u l l  e l e c t r i c a l  power 

t o  the  t e s t  platform on a continuous 24-hour-a-day basis .  

Another development platform at General U e c t r i c  has interest ing features. 

Attitude i s  read out t o  a few seconds of arc  by a small three-axis following 

gimbal system b u i l t  around the  bearing support beneath the platform. 

on t h i s  gimbal system are magnetic torques tha t  can apply precisely measured 

torques t o  the  platform at any at t i tude.  

a t t i tude  measuring system t h i s  permits the  kind of torque and angle measurements 

discussed in  the section on platform balance calculations. 

t u r e  of t h i s  platform is  the use of a ba l l  support with a 1/2-inch-diameter hole 

dr i l led  clear  through so that  a i r  from the bearing support can be transferred t o  

the platform for  use i n  a i r  j e t  a t t i tude control systems without the unbalance 

tha t  can occur as onboard tanks are depleted. 

Mounted 

I n  conjunction with the precision 

An additional fea- 

CONCLUSIONS 

It seems apparent tha t  the technology of airbearing platforms has moved 

swiftly from a simple qual i ta t ive research tool  some f ive or s i x  years ago, t o  

a complex and potent ia l ly  quite precise quantitative instrument for  investig- 

ation of' a wide variety of a t t i tude  control research problems and performance 

ver i f icat ion studies. I n  order t o  overcome the numerically s m a l l  but theor- 

e t i c a l l y  important extraneous platform torques due t o  gravity unbalance, and 

externally applied forces, it appears necessary t o  construct rather elahorate 

f a c i l i t i e s .  

presented by such features as: isolat ion in  a vacuum chamber and construction 

of a following gimbal system for  a t t i tude readout with i ts  additional use 

for  applying cal ibrat ion torques t o  the platform and providing a vir tual ly  dis-  

turbance free means f o r  connecting e lec t r ica l  wires t o  the platform. 

The possibi l i ty  of qui te  precise quantitative numerical data i s  
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